Electronically Modified Cobalt Aminopyridine Complexes Reveal an Orthogonal Axis for Catalytic Optimization for CO₂ Reduction

Alon Chapovetsky, Jeffrey J. Liu, Matthew Welborn, John M. Luna, Thomas Do, Ralf Haiges, Thomas F. Miller III, and Smaranda C. Marinescu. *Electronically Modified Cobalt Aminopyridine Complexes Reveal an Orthogonal Axis for Catalytic Optimization for CO*₂ *Reduction.* Inorganic Chemistry (2020) 59 (18), 13709-13718. DOI: 10.1021/acs.inorgchem.0c02086

Scientific Achievement

 We synthesized and investigated a family of molecular cobalt catalysts for electrochemical CO₂ reduction.

Significance and Impact

 Hydrogen-bonding and electronic inductive effects via chemical substitution can be utilized as orthogonal dials for catalytic tuning.

Technical Details

- Combined experimental and theoretical work finds electronic modification of the catalytic framework influences the basicity of critical Co-CO₂(H) intermediates.
- The most electrochemically active species via (*i_{cat}*/*i_p*) is predicted to have the most favorable Co-CO₂ proton binding energies.
- Hammett analysis is consistent with positive charge build up in the transition state (r < 0).

Incorporation of hydrogen bond donors into the framework of cobalt aminopyridine macrocycles has been demonstrated to increase the rate of reaction for electrochemical CO₂ reduction. Now further work has shown that electronic inductive effects imparted from chemical modification can influence catalysis through an orthogonal axis. Combined experimental and theoretical work suggests these inductive effects play a role in the basicity of critical reaction intermediates in the catalytic cycle.